Pyrimidine nucleotides suppress KDR currents and depolarize rat cerebral arteries by activating Rho kinase.
نویسندگان
چکیده
This study examined whether, and by what signaling and ionic mechanisms, pyrimidine nucleotides constrict rat cerebral arteries. Cannulated cerebral arteries stripped of endothelium and pressurized to 15 mmHg constricted in a dose-dependent manner to UTP. This constriction was partly dependent on the depolarization of smooth muscle cells and the activation of voltage-operated Ca(2+) channels. The depolarization and constriction induced by UTP were unaffected by bisindolylmaleimide I, a PKC inhibitor that abolished phorbol ester (PMA)-induced constriction in cerebral arteries. In contrast, the Rhokinase inhibitor Y-27632 attenuated the ability of UTP to both constrict and depolarize cerebral arteries. With patch-clamp electrophysiology, a voltage-dependent delayed rectifying K(+) (K(DR)) current was isolated and shown to consist of a slowly inactivating 4-aminopyridine (4-AP)-sensitive and an -insensitive component. The 4-AP-sensitive K(DR) current was potently suppressed by UTP through a mechanism that was not dependent on PKC. This reflects observations that demonstrated that 1) a PKC activator (PMA) had no effect on K(DR) and 2) PKC inhibitors (calphostin C or bisindolylmaleimide I) could not prevent the suppression of K(DR) by UTP. The Rho kinase inhibitor Y-27632 abolished the ability of UTP to inhibit the K(DR) current, as did inhibition of RhoA with C3 exoenzyme. Cumulatively, these observations indicate that Rho kinase signaling plays an important role in eliciting the cerebral constriction induced by pyrimidine nucleotides. Moreover, they demonstrate for the first time that Rhokinase partly mediates this constriction by altering ion channels that control membrane potential and Ca(2+) influx through voltage-operated Ca(2+) channels.
منابع مشابه
Rho-kinase-mediated suppression of KDR current in cerebral arteries requires an intact actin cytoskeleton.
This study examined the role of the actin cytoskeleton in Rho-kinase-mediated suppression of the delayed-rectifier K(+) (K(DR)) current in cerebral arteries. Myocytes from rat cerebral arteries were enzymatically isolated, and whole cell K(DR) currents were monitored using conventional patch-clamp electrophysiology. At +40 mV, the K(DR) current averaged 19.8 +/- 1.6 pA/pF (mean +/- SE) and was ...
متن کاملActivators of the PKA and PKG pathways attenuate RhoA-mediated suppression of the KDR current in cerebral arteries.
This study tested whether activation of protein kinase A (PKA) and G (PKG) pathways would attenuate the ability of RhoA to suppress the delayed rectifier K(+) (K(DR)) current and limit agonist-induced depolarization and constriction. Smooth muscle cells from rat cerebral arteries were enzymatically isolated, and whole cell K(DR) currents were monitored with conventional patch-clamp electrophysi...
متن کاملStatins and Selective Inhibition of Rho Kinase Protect Small Conductance Calcium-Activated Potassium Channel Function (KCa2.3) in Cerebral Arteries
BACKGROUND In rat middle cerebral and mesenteric arteries the K(Ca)2.3 component of endothelium-dependent hyperpolarization (EDH) is lost following stimulation of thromboxane (TP) receptors, an effect that may contribute to the endothelial dysfunction associated with cardiovascular disease. In cerebral arteries, K(Ca)2.3 loss is associated with NO synthase inhibition, but is restored if TP rece...
متن کاملRelative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension.
Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be altered in cardiovascular disorders. In the present study, we evaluated the relative contribution of P...
متن کاملRock 'n' Rho: regulation of ion channels.
THE SMALL GTPase Rho has three isoforms, RhoA, RhoB, and RhoC, of which RhoA has been widely studied. When the Rho gene was first cloned in 1980s, the physiological function of Rho was thought to be similar to its relatives, the Ras proteins. Unexpectedly, Rho was soon found to be crucial in the regulation of the actin cytoskeleton (10, 11). In the following years, many Rho downstream targets w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 3 شماره
صفحات -
تاریخ انتشار 2004